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1 Introduction
• Crevasses that penetrate through thickness create rifts that 

influence ice flow on ice shelves in a major way.

• Rifts can close when longitudinal stresses become compressive 
enough -> rifts become faults where tangential friction along 
flanks drives ice flow. 

• Rifts filled with water are inherently unstable (when non-linear 
creep flow law is considered) -> wiggling between rift and fault 
state. Melange stabilizes this process.

• We present new finite element model, embedded into ISSM (Ice 
Sheet System Model), to model contact mechanics of faults, and 
ice flow around rifts filled with melange.

• We apply this new model to invert for ice rheology on Brunt Ice 
Shelf and Larsen C Ice Shelf.
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Several types of rifts/faults  can be observed in ice shelves:

• surface and bottom crevasses in the process of creating rifts.

• rifts filled with water or melange: opening flanks on both sides of the rift.

• fault: rift that stopped opening and is closing, with contact between both flanks,
involving friction. 

2 Rift/Fault modeling.
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Boundary conditions for opening rift: 
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For α =0 -> ice front.

For α =1 -> rift fully filled with ice.

For a rift filled with water, imbalance between ice and water pressure tends to close 

rift.

For a rift filled with ice, pressure is fully compensated, and opening is favored, 

provided longitudinal stress is tensile.
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Boundary conditions for closing fault:

Penalized normal penetration:
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Kmax: maximum stiffness matrix
λ: penalty offset.

H: ice thickness

l: segment length

f: friction coefficient.

t f *H* l* Vt

n Kmax10 Vn

Tangential linear friction: 
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3 Brunt Ice Shelf.
•Radarsat-1 speckle-tracking 
surface velocity acquired in 2000.
•Grounding line inferred from ERS-
1/2 data (from 1996 for fast flow 
areas) and RADARSAT-1 (from
2000 for slower moving areas) 
using double difference
Interferometry.
•Ice shelf elevations from the 
GLAS/ICE Sat laser altimeter
digital elevation model of 
Antarctica [DiMarzio et al., 2007].
•Firn estimates from van den 
Broeke [2006, 2008].
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Inverted ice 
rigidity with 
no rifts.



Inverted ice 
rigidity with 
rifts.



Modeled – Observed 
velocity, with rifts.
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• Ice thickness by Griggs and 
Bamber (2009) obtained 
from ERS-1 RA data.

Corrections made for tidal 
movement and firn.

Resolution = 1 km.
Mean random error = 47.3 m.

• Grounding line by double 
difference interferometry on 
ERS-1/2 data (march 1996).

Error: ± 100 m. 

• Year 2007 (Oct.-Dec.) ice 
velocity by speckle tracking 
on ALOS PALSAR data. Error: 
± 5 m a-1.

4 Larsen C Ice Shelf.
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Inverted ice rigidity with 
no rifts.



Inverted ice rigidity with 
rifts.



5 Conclusions.
• Rifts and faults can be modeled using contact 

mechanics principles. Stabilization of “wiggling” 
effect possible using melange fraction.

• Ice flow models can accurately account for delta-
velocity across rifts, and tangential friction between 
flanks for faults.

• Rifting/Faulting processes can be used in ice rheology 
inversions.

• New model allows for better ice rheology inversions, 
where rigidity of ice does not have to accommodate 
for breakdown in continuum mechanics.
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